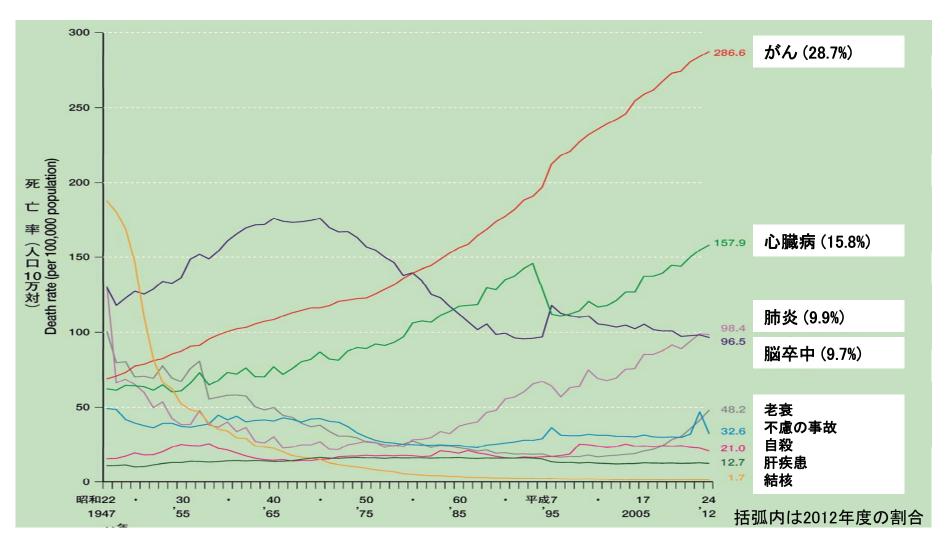


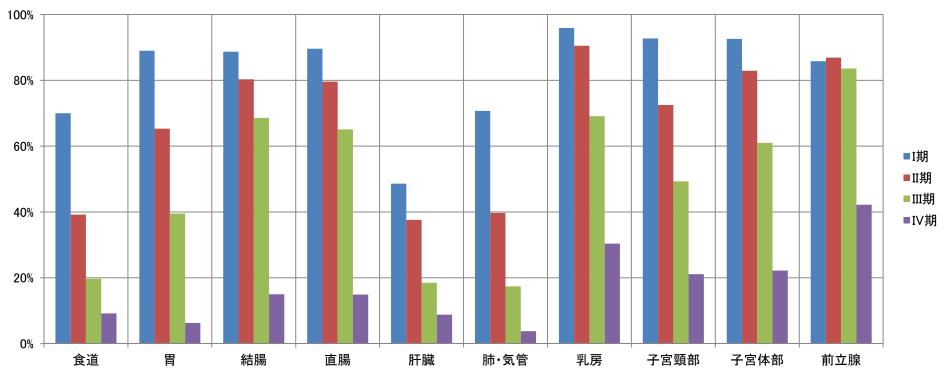
「体液中マイクロRNA測定技術基盤開発」 プロジェクトの意義について


2014.8.18

バイオテクノロジー・医療技術部

死因別に見た死亡率の年次推移

- がん患者は年々増加しており、現在、日本における死因第一位。
- がん患者の5年相対生存率は6割弱。



がん治療の現状

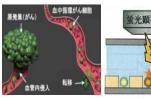
- がんの進行とともに、いずれの部位でも生存率が大きく低下。
- がんの克服に向けて「早期発見」は重要だが、発見が可能な限り早期であることが重要。また、「早期治療」も重要だが、患者のがんの病状に応じた治療(治療の個別化)も必要。
- そのためには、早期にがんの種類・症状を検知可能な生体物質(腫瘍マーカー)が必要。

部位別ステージ別5年生存率

NEDOにおける がんに対する取組の例

診断

②がんの位置を つきとめる ③がんの診断を 確定する 治療


④がんの治療

①がんを探す

血液中がん分子・ 遺伝子診断システム

血液循環がん細胞の診断機器

健康診断レベルの検査 で、がん発症の正確な情報を提供

画像診断システム

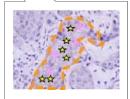
マンモPET

微小な乳が んの早期発 見を可能に

フレキシブルPET

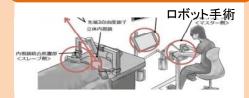
MRIなどと の組み合わ せ診断を可 能に

リアルタイム4Dイメージング



画像診断で、早期がんを検出

病理診断 支援システム


肝がん等の病理診断支援

病理画像からの特徴量 を定量化し、早期がんの 確定診断を支援

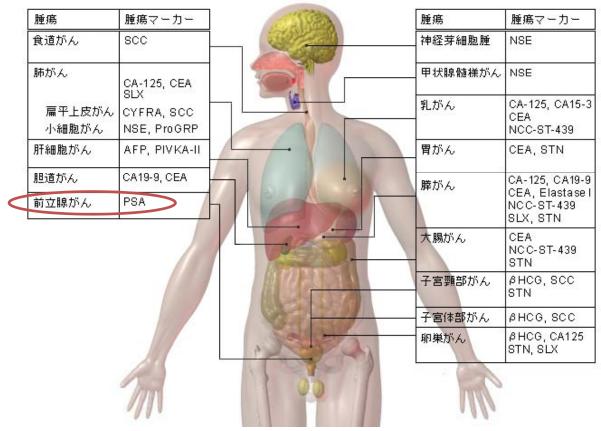
内視鏡下手術 支援システム

低侵襲外科手術

高精度X線治療機器

低被ばくX線治療

BNCT


小型直線加速器

中性子利用の治療

腫瘍マーカーの現状と課題

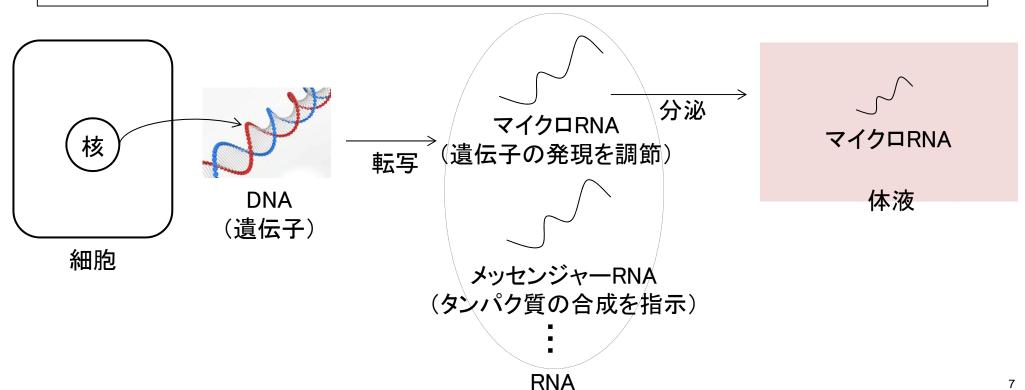
- これまでに40種類程度の腫瘍マーカーが開発されているが、主として、進行したがんの治療効果を判定するのに使われているのが現状。
- 健常者のがん検診に実用化されているのはPSAのみであり、その他の腫瘍マーカーは感度・特異度が低く、がん検診には使用されていない。

出典 国立がん研究センターがん対策情報センター

がん検診の現状と課題

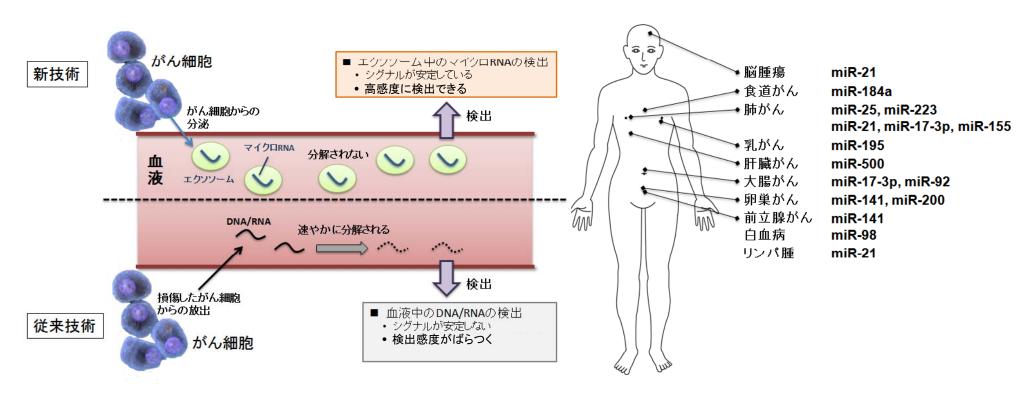
- 現在、がん検診はX線検査などにより6種のがんでのみ行われているが、多くの検査法は 患者への負担が大きく、受診率も3割程度にとどまっている。
- このため、血液などを用い患者の負担を極力軽減する「低侵襲」、かつ、診断結果に患者が振り回されないよう「高感度」で、1回の検査でがんの種類を把握可能な検査法が望まれている。

一次検診(スクリーニング検査)


肺がん	肺X線検査
胃がん	胃X線検査(間接)
大腸がん	便潜血検査化学法•免疫法
前立腺がん	PSA検査
子宮頸がん	細胞診、HPV検査
乳がん	マンモグラフィ

「有効性評価に基づくがん検診ガイドライン」より引用・改変

診断マーカー候補として注目されるマイクロRNA (NEDO


- マイクロRNAとは、血液、唾液、尿などの体液に分泌される18~25塩基ほどの小さなRNA。
- 近年の研究の進展により、マイクロRNAは、がん等の疾患に伴って患者の体液中でその種 類や量が変動することが明らかになり、全く新しいタイプの腫瘍マーカーとして注目され始 めている。
- また、マイクロRNAは、がんの発症に限らず、抗がん剤の感受性の変化、転移・がんの消失 等の病態の変化にも相関する腫瘍マーカーとしても期待されている。

がん・認知症に特異的なマイクロRNA

- マイクロRNAは、タンパク質複合体又は「エクソソーム」と呼ばれる小胞に包まれて分泌されるため、体液中で安定しており、高感度の検出が可能。
- 血液中のマイクロRNAの種類・量を特定することにより、病気を意識できない段階で、早期のがんや認知症を発見することが可能と考えられる。

国による支援の必要性

- マイクロRNAを活用した診断を実用化するには、膨大の臨床サンプルを用いて、網羅的に各種マイクロRNAを検証し、診断マーカーとしての意義を明らかにする大規模な疫学研究 (人間集団を対象に健康に関わる要因を明らかにする研究)が必要。
- NEDOとして、プロジェクト参加企業による研究成果の実用化はもちろん、製薬企業、診断薬企業、診断機器企業等によるユーザーフォーラムを設立し、プロジェクト成果の橋渡しを行い、成果の実用化を強力に推進。
- 事業期間:2014年度~2018年度(5年間)、事業規模:約79億円(予定)

 国立がん研究センター・ 国立長寿医療研究センター のバイオバンク
 (各5000症例) 認知症(4000症例) 関連疾患の患者血液
 約2500種の マイクロRNAの 網羅的解析
 特定のマイクロ RNAを有する患者 の病態情報

> マイクロRNA診断マーカー /診断技術

プロジェクト参加企業、ユーザー フォーラム参加企業による実用化